A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis
نویسندگان
چکیده
Cyclooxygenase-2 is frequently upregulated in epithelial tumors and contributes to poor outcomes in multiple malignancies. The COX-2 product prostaglandin E2 (PGE2) promotes tumor growth and metastasis by acting on a family of four G protein-coupled receptors (EP1-4). Using a novel small molecule EP4 antagonist (RQ-15986) and a syngeneic murine model of metastatic breast cancer, we determined the effect of EP4 blockade on innate immunity and tumor biology. Natural killer (NK)-cell functions are markedly depressed in mice bearing murine mammary tumor 66.1 or 410.4 cells owing to the actions of PGE2 on NK cell EP4 receptors. The EP4 agonist PGE1-OH inhibits NK functions in vitro, and this negative regulation is blocked by RQ-15986. Likewise, the treatment of tumor-bearing mice with RQ-15986 completely protected NK cells from the immunosuppressive effects of the tumor microenvironment in vivo. RQ-15986 also has direct effects on EP4 expressed by tumor cells, inhibiting the PGE2-mediated activation of adenylate cyclase and blocking PGE2-induced tumor cell migration. The pretreatment of tumor cells with a non-cytotoxic concentration of RQ-15986 inhibited lung colonization, a beneficial effect that was lost in mice depleted of NK cells. The oral administration of RQ-15986 inhibited the growth of tumor cells implanted into mammary glands and their spontaneous metastatic colonization to the lungs, resulting in improved survival. Our findings reveal that EP4 antagonism prevents tumor-mediated NK-cell immunosuppression and demonstrates the anti-metastatic activity of a novel EP4 antagonist. These observations support the investigation of EP4 antagonists in clinical trials.
منابع مشابه
Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells.
We examined the effects of prostaglandin E (PGE) receptor subtype EP4 antagonist on bone metastasis of cancer to clarify PGE's role in bone metastasis. Metastatic regions were detected in femurs accompanying severe bone loss in mice injected with B16 malignant melanoma cells. Administration of EP4 antagonist restored the bone loss induced by B16 melanoma. Adding B16 cells induced osteoclast for...
متن کاملEP4 as a Therapeutic Target for Aggressive Human Breast Cancer.
G-protein-coupled receptors (GPCRs, also called seven-transmembrane or heptahelical receptors) are a superfamily of cell surface receptor proteins that bind to many extracellular ligands and transmit signals to an intracellular guanine nucleotide-binding protein (G-protein). When a ligand binds, the receptor activates the attached G-protein by causing the exchange of Guanosine-5'-triphosphate (...
متن کاملProstaglandin E receptor EP4 antagonism inhibits breast cancer metastasis.
Cyclooxygenase-2 (COX-2) expression in epithelial tumors is frequently associated with a poor prognosis. In a murine model of metastatic breast cancer, we showed that COX-2 inhibition is associated with decreased metastatic capacity. The COX-2 product, prostaglandin E(2) (PGE(2)), acts through a family of G protein-coupled receptors designated EP1-4 that mediate intracellular signaling by multi...
متن کاملProstaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression.
UV radiation induces systemic immunosuppression. Because nonsteroidal anti-inflammatory drugs suppress UV-induced immunosuppression, prostanoids have been suspected as a crucial mediator of this UV effect. However, the identity of the prostanoid involved and its mechanism of action remain unclear. Here, we addressed this issue by subjecting mice deficient in each prostanoid receptor individuall...
متن کاملUpregulation of C-C chemokine receptor type 7 expression by membrane-associated prostaglandin E synthase-1/prostaglandin E2 requires glycogen synthase kinase 3β-mediated signal transduction in colon cancer cells.
C-C chemokine receptor type 7 (CCR7) is involved in the development and progressions of chronic inflammatory diseases and cancer; therefore, signaling pathways that regulate CCR7 expression may represent novel molecular therapeutic targets. Previous studies by our group revealed that CCR7 is important in colon cancer progression and a is linked with cyclooxygenase (COX)‑2‑derived prostaglandin ...
متن کامل